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ABSTRACT 

A general model for changepoint problems is discussed from a nonparametric viewpoint. The 
test statistics introduced are based on CramCr-von Mises functionals of certain processes and are 
shown to converge in distribution to corresponding Gaussian functionals (under the assumption of 
no change in distribution, $1. We also demonstrate how the distribution of the limiting Gaussian 
functionals may be tabulated. Finally, properties of the tests under the alternative hypothesis of 
exactly one changepoint occumng are studied, and some examples are given. 

Cet article examine d'un point de vue non-paramCtrique un modble gCnCral pour les problbmes 
d'identification du moment de changement de loi. Les fonctions des observations ?itester sont 
fondCes sur des fonctionnels de type CramCr-von Mises de certains procCdCs et il est dCmontrC 
que ces fonctions des observations convergent en distribution vers les fonctionnels de Gauss 
correspondants (sous l'hypothbse d'aucun changement en distribution, %). Nous dimontrons 
Cgalement comment tabuler la distribution des fonctionnels limites de Gauss. Enfin, nous Ctudions 
des propriCtCs des tests sous l'hypothbse alternative d'exactement un moment de changement de 
loi et donnons quelques exemples. 

1. INTRODUCTION 

The paper presented here is partially based on the author's Ph.D. thesis (cf. Huse 
1988), which discusses a number of changepoint problems in an AMOC (at most one 
changepoint) setting. The topics examined there include a sequential approach (see 
also Huse 1989) as well as fixed-sample-size methods. The latter are applied using 
Kolmogorov-Smirnov and CramCr-von Mises test statistics as well as the Kendall- 
Kendall pontogram technique [cf. also Huse-Eastwood (1989) and Eastwood (1990)l. 
In this article we restrict our attention to the CramCr-von Mises setting. For a more 
general introduction to nonparametric methods for changepoint problems we refer to 
Csorgo and Horvith (1988b) and to Wolfe and Schechtman (1984). 

The hypotheses under consideration here can be stated as follows: 

3$:XI,X2,  . . . ,Xn are independent with cumulative distribution function F, 

versus 
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Y&: there exists 1 5 k < n such that XI , .  . . ,Xk have distribution F, that Xk+l,. . . ,Xn 
have distribution G, and that F # G. 

The only assumption on the distributions F (and G ) involved is that they are nondegen- 
erate. 

In this general setup we wish to consider test statistics that are based on CramCr-von 
Mises (i.e., L2-norm) functionals of 

where h is either an antisymmetric or a symmetric real-valued function (kernel) and 
where 8 = 55 h(X1,X2) (i.e., 8 = 0 in case h is antisymmetric). 

For a given kernel h and any (asymptotically) consistent estimator 8 of the parameter 
8, the functionals under consideration are of the form 

for suitable weight functions g. Here e2is the variance of the projection of the kernel 
h as defined in Section 2. 

The change in distribution of course occurs (if it does at all) at unknown time b.This 
implies that under the alternative hypothesis, (1 . l )  cannot be modelled using two-sample 
results, since the true changepoint ko is unknown. However, under the null hypothesis of 
no change, one-sample U-statistics can be related to Uk, as will be shown in Section 2. 
The idea will be that under the assumption of no change in distribution we will first 
represent Uk as a linear combination of nondegenerate (provided that h is a nondegenerate 
kernel) one-sample U-statistics. Next we will approximate (via the projection principle) 
each U-statistic involved by an appropriate sum of independent identically distributed 
random variables [see (2.6)]. Then we will employ Donsker's Theorem as in CsorgB and 
RCvCsz (1981, p. 90) to find the limiting distribution of the CramCr-von Mises functionals 
(1.2). It will be established that these limits do not in any way depend on either the kernel 
function h or the initial distribution F. Consequently, we can derive approximate cutoff 
points from those limits, and we only need to tabulate values twice (antisymmetric and 
symmetric cases separately), regardless of whether we wish to test for a shift in mean or 
a change in variance or any other change in distribution. 

The remaining problem then is whether we can find a general enough method to 
actually compute these percentage points (especially for complicated weighted versions 
of the test statistics). The question of weights is discussed along with the derivation of the 
limiting distributions in Section 2, and methods for the tabulation of the cutoff points are 
presented in Section 3. Section 4 contains considerations under the alternative hypothesis 
of exactly one changepoint occurring at unknown time k, and also some concluding 
remarks. 

We close this introductory section with some examples of tests involving the variables 
uk: 

(1) Antisymmetric kernel h: Wilcoxon rank-sum statistic. Let XI , .  . . ,Xn denote a 
random sample from a continuous distribution F. Define h(x, y) = sgn(x -y) = 1,0, -1 
if x > y,x = y, x < y respectively. Let R1, R2,. . .,Rk denote the ranks of the first k 
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observations X I , .. . ,Xk in the complete sample of n observations. Then we obtain [cf. 
Pettitt (1979) without proof and Huse (1988) with proof] 

where Wk Rj is the Wilcoxon rank-sum statistic. Under the assumption of no = c=,
change in distribution (%)we see that 

=8 = Eh(X1, X2) = 2. sgn(X1 -X2) = 0 and War h2 ( ~ 1 )  > 0, 

where k( t )  = E h ( t , X 1 ) is the projection of the kernel h. Consequently, all methods 
presented in the next sections apply here. 

( 2 )  Symmetric kernel h: change-in-variance problems. Take 8 = o2= 02(F ) ,  where 
F is the cumulative distribution function of the random sample X I , .. . ,Xn,  and let 
h(x,  y )  = i ( x  - y12. Then the corresponding U-statistic is 

(cf. also Serfling 1980). Furthermore, 

i.e., this special Uk is indeed a linear combination of nondegenerate U-statistics, as 
claimed in the introduction. Utilizing a sequence of consistent estimators o; for o2> 0 
and Slutzky's Theorem, we see again that the methods discussed in the following apply 
here. Further typical choices of symmetric kernels include h ( x , y )  = xy and h ( x , y )  = 
I X  -y 1, the latter leading to Gini's mean-difference statistic. 

2. LIMITING DISTRIBUTIONS UNDER 91$ 

Let h be a symmetric kernel function [i.e., h ( x , y ) = h ( y , x ) for all x , y  E R ]  or let h 
be antisymrnetric [ h ( x , y )= - h ( y , x ) ] .  We suppose that 
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Put 0 = 'Eh(XI,  X2) (= 0 in the antisymmetric case), and define the projection h via 

Furthermore, we require that h be a nondegenerate kernel, i.e., 

For the random variables Uk introduced in ( 1 . 1 )  we then have the following representation 
as a linear combination of nondegenerate one-sample U-statistics: 

where 

in case of symmetric h, while the constant terms vanish when h is antisymmetric. 

THEOREM1. Let h be an antisymmetric kernel function. 

(a) Under the assumptions (2.1) and (2.3) we have as n -co 

where B = {B(t): 0 5 t < 1)  denotes a Brownian bridge (tied-down Brownian motion). 
(b) Suppose in addition to (2.1) and (2.3) we also have 

'E lh(X1, X2)1" < co for some v > 2. (2.5) 

Let g : ( 0 , l )  -+ ( 0 , ~ )by monotonically nondecreasing near 0, monotonically non- 
increasing near 1, and such that lims5,sl-8 g(t) > 0 for all 6 E (0,i). Then as 

if and only if 
t ( l  - t )  

dt = dt < 00. 

REMARKS.AS pointed out in the introduction, the results of Theorem 1 clearly indicate 
that only one uppernower-percentage-point table is necessary per weight function, inde- 
pendently of the chosen antisymmetric kernel h and the underlying distribution F of the 
data. 

The weight functions g are intended to make the corresponding test statistics more 
sensitive on the tails, i.e., near 0 and 1 [as in general g ( t ) -+ 0 as t -+0 or t + 11. In the 
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proof of Theorem l(b) we will temporarily assume that g is symmetric about 4.This is 
done to shorten the proof only and is by no means a necessary restriction. 

Proof of Theorem 1 .  Part (a): Janson and Wichura (1983) (see in particular Theorem 2.1) 
present weak approximations of the U-statistics in (2.4) under the conditions (2.1) and 
(2.3) [for a detailed proof see Huse (1988), Lemma 2.1.61: as n +GO, 

k 

rnax ~ f ' ) - x ( k - 2 i + l ) h ( ~ i )= Op(n),
l<k<n i=1 

max u$" - x (n + k - 2i + l)h(xi) = Op(n),
l<k<n i=k+l 

The statements in (2.6) could be termed a reduction principle. They reduce the problem 
of determining the limiting distribution of a linear combination of U-statistics to the 
problem of finding the limiting distribution of a sequence of partial sums of independent 
identically distributed random variables (namely the projections). 

The reduction principle (2.6) can easily be seen to imply (compare also Huse 1988, 
Corollary 2.1.7): as n +GO, 

k 

max h - ( n h - k ~ i ( ~ ~ )
l < k < n  i=1 

Using (2.7), the equality a2 - b2 = (a - b12 + 2b(a - b), and the fact that the square 
integral of a Brownian bridge is almost surely finite, part (a) follows now via Donsker's 
Theorem as in Theorem 2.1.2 in CsorgB and RCvCsz (1981) from the corresponding 
sup-norm result [see Theorem 4.1 in Csorgii and Horvith (1988a)l: 

Here {Bn)n>l is a sequence of Brownian bridges. We note that without loss of generality 
we can always work on a large enough probability space which accommodates all 
processes and random variables in question (cf. DeAcosta 1982). 

Part (b), sufficiency: We first split the integral into three parts, integrating 

where Bn is as in (2.8), successively over 

( 6 ,  1 - €1, (L €) and (1 - €, 1 --
n +  1'  
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For fixed but arbitrary E > 0 ,  on applying the same arguments as used in part (a), by (2.8) 
we obtain 

By symmetry we now only need to consider the range ( l / ( n+ I), c). We will employ 

(cf. CsorgB and Horvith 1988a, Theorem 4.2) in lieu of (2.8). Equation (2.10) is valid 
under the additional assumption (2.5).We also need the Cauchy-Schwarz inequality and 
an application of (19.2) in Shepp (1966)to arrive at 

and then E 1 0 by (2.10). Here the argument taken from Shepp (1966)states that 

t(1 - t )$f dt < m almost surely if and only if dt < m. (2.11) 

To complete the sufficiency part of this proof we note that 

holds by (2.11) and by the assumed symmetry of g for any Brownian bridge B. 
Part (b), necessity: Proof by contradiction provides this part immediately from the 

statement (19.4) in Shepp (1966): 

t(1 - t )  
dt = m implies B2(t )  dt = m almost surely. 

Q.E.D. 

THEOREM2. Let h be a symmetric kernel function. 

(a) Under the assumptions (2.1) and (2.3) we have 

where the Gaussian process l- = {T( t ) : 0 5 t 5 1 )  is dejined by T( t )  = ( 1  - t )W(t)+ 
tW(1)- tW(t) .  Here W denotes a standard Brownian motion (Wiener process). 
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(b) Given the conditions (2.1), (2.3), (2.5), and g as in (b) of Theorem 1, we have as 

REMARK. We note that although the expected value and the variance of T( t )and of B(t) 
coincide, the Gaussian process T is not a Brownian bridge, because Cov ( ~ ( s ) ,T(t) )  = 
( 1  -2s)(l  -2t)(s A t )  + (3-2s -2t)# Cov ( ~ ( s ) ,  = s A t -st, where s A t  denotes~ ( t ) )  
the minimim of s and t. 

Proof of Theorem 2. Instead of (2.6) we use as the starting point here 

max u:" - k C
k 

&(xi)= Op(n).
I S k S n  

i= l  

max u$"- ( n- k )  C
n 

&(xi)= Op(n). (2.12)
I < k S n  

i=k+l 

an n +m. Equation (2.12) is a consequence of Theorem 1 of Hall (1979) and implies 
immediately 

as n -+ co.Comparing (2.13) with the previously obtained (2.7) for the antisymmetric 
case, we notice that a different Gaussian process emerges as the limit in the symmetric 
case. This fact is reflected in saying [cf. Theorems 2.1 and 2.2 of CsorgB and Horvith 
(1988a)l that under the assumptions (2.1)and (2.3)one can define a sequence of Gaussian 
processes {T,(t) : 0 5 t 5 such that (2.8) holds true with Tn replacing B , .  And 
we have (2.10)as well this way on assuming also (2.5),where for each n 2 1 ,  Tnis the 
same Gaussian process as that of Theorem 2. The remainder of the proof of Theorem 2 
follows along the same lines as the proof of Theorem 1 with minor modifications to 
accommodate the new process T. Q.E.D. 

Figure 1 shows three different sample paths of a Brownian bridge B,  while Figure 2 
displays the corresponding sample paths of a T-process. All sample paths were generated 
from realizations of a Wiener process via B(t)= W ( t )- tW(1)and T( t )= ( 1  - t )W( t )+ 
tW(1)-tW(t) .The simulation procedure is explained in Eastwood and Eastwood (1990). 
As proposed in the introduction, Theorems 1 and 2 give the limiting distributions for any 
changepoint problem under the assumption of no change in distribution. 

In the next section we will suggest methods to tabulate these limiting distributions. 

3. TABULATING THE DISTRIBUTION OF GAUSSIAN FUNCTIONALS 

The major goal of the present section is to find upper percentage points for 
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FIGURE1 : Three sample Brownian bridge processes approximated using 101 equally spaced sample 
points. 

t 

F~GURE2: Three sample gamma processes approximated using 101 equally spaced sample points. 

or, more generally speaking, for S,'x2(t)dt, where X denotes an arbitrary Gaussian 
process. Nonnumerical methods already established in the literature rely mostly on an 
application of Mercer's Theorem (see, e.g., Shorack and Wellner 1986, Chapter 5) and 
on the computation of the eigenvalues of certain differential equations. 

These methods, however, have been shown to fail often, especially when X # B, W or 
when weight functions of a slightly more complicated nature are involved. For example, 
taking X(t) = leads to a Riccati differential equation which will have closed- m ~ ( t )  
form solutions (represented by Bessel functions) at most for weight functions of the form 
~ ( r )= cta, a > -2 (cf. Karnke 195 1, A.48). 

MacNeil (1974) used a similar approach to solve the problem for x2(t)  = ataw2(t) 
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when a > -2. The condition a > -2 results from the requirement that the square integral 
be finite almost surely. A detailed discussion of the merits of previous attempts to tabulate 
the distribution of square integrals of Gaussian functionals is given in Chapter 3 of Huse 
(1988). 

In order to find P(Gx 2 ( t ) d t  5 z )  for given z > 0 and conversely z for given 
probability level a for a large enough class of Gaussian functionals, we employ the 
following method, which for simplicity's sake is introduced here using the example 
X = r (see also Eastwood and Eastwood 1990). The starting point is the classical Paley- 
Wiener representation (1934)of Brownian motion [see, e.g., CsorgB and R6v6sz (1981), 
formula (1.8.4)]: 

00 
sin knt

~ ( t )= ~ o t + f i / ? C  Yk ,  O s t s l .  
k=1 

The convergence of the infinite series in (3.1) is uniform and absolute in the unit interval, 
and { Y k ) k > ~denotes a sequence of independent identically distributed standard normal -

random variables. 
As r 2 ( t )  = ( ( 1  - t )W( t )+ tW(1)  - tw(t))'  for t E [0, 11, Equation (3.1) and the 

interchange of integration and summation imply 

W W 1 

+ 2 CC5 5/ (1- 2)' sin knt sin m a  dt 
k n  m n  k=l m = l  

where 

1 
if m > 1, meven, k = 0 ,  

3 2 
if k ,  m 2 1, k # m, k + m even,

A(k2 -m2)n2I2  
otherwise. 

This leads us to the following general observations: if Tx = X2(t )d t  is any given 
Gaussian functional, then it is an immediate consequence of the Paley-Wiener repre- 
sentation (3.1) that there exist real numbers a h ,  k , m  2 0 ,  and a sequence { Yk)k20of 
independent identically distributed N(0, 1 )  random variables such that 
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Cutoff points for 

Furthermore, after diagonalizing the matrix A = (ak,), we obtain that 

for appropriate ?Q > hl > . . . > h~ > 0 and K chosen suitably large. In other words, 
the distribution of the Gaussian functional Tx can be approximated arbitrarily closely 
(for K extremely large) by a quadratic form in independent N(0, 1) random variables 
without having to solve any differential equations. This approach appears to have been 
overlooked thus far. It works even in cases of complicated, noncontinuous covariance 
functions and leads to acceptable results in all known cases, as is demonstrated next. 
Applying the previously described method, we obtain for a > 1 even: 

and for a > 1 odd: 

The same method can then be used to obtain representations for J,' taB2(t) dt (cf. East- 
wood and Eastwood 1990, Section 6). Here we are interested in the special cases a = 1,2, 
which were already studied by MacNeill (1974). MacNeill's values are quoted as za in 
Table 1 and are used to demonstrate the exactness of our method. We calculated: 
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k#m, k+m odd 

for a = 1 and 

for a = 2. Combining the last four formulae, we computed the K x K matrix A as 
required for (3.3). To obtain Table 1 from here, the following steps were performed for 
K = 50,60,. . . ,100: 

Step 1 .  Enter A in the computer (we used a VAX 8800, FORTRAN routines, 64-bit 
double precision). Call IMSL library subroutine DEVCSF to compute all eigenvalues of the 
real symmetric matrix A. Note that, using Lemma 3.1.3 in Huse (1988) and Mercer's 
Theorem, it can be shown that A is a positive definite matrix and that consequently all 
eigenvalues hl  > h2 > . . . > hK must be positive. The subroutine DEVCSF reports the hi's 
in ascending order. As a result we now have 

Step 2.  For given value of the parameter K, compute the first three cumulants of the 
last quadratic form as 

c; = x k k ,  c; = 2 z y ,  and c; = 8 x h : .  

We denote these by cT = c;K for i = 1,2,3. Whenever possible we also compute 

using the recursively defined covariance integral of Shorack and Wellner (1986, pp. 
2 12-2 13). Next renormalize the cumulants to arrive at 

C1,K = C2,K = ctK 
C ~ ,

c; 
K
K 

= ~ h'=--.c: Kc T , ~ ,  2 ' 8 ' 
and 

4 . K  

Step 3. By Imhof (1961), 

where xi, denotes a (central) chi-square random variable with h' degrees of freedom and 
I 

where z and y are related by the equation y = C I , ~ ) ( ~ ' / C Z , K ) ~(z - +h'. For various levels 
of a we used the IMSL routine DCHIIN to evaluate the inverse of the appropriate chi-square 
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Cutoff points for P ($r2(t)dt 5 z )  = a 

distribution function. The values y = found through DCHIIN were then converted to y , ~  
values Z K  via the above equation. Values of Z K  for K = 50 and 100 are reported in 
Table 1. Values of z ,  are based on ci , ,  of step 2.  A more extensive collection of tables 
is in Eastwood and Eastwood (1990). Table 2 displays the cutoff points for the square 
integral of the r-process. Using Monte Carlo simulations, the distribution of sup-norm 
functionals of the r-process has also been tabulated (cf. Eastwood and Eastwood 1990). 

4. CONSISTENCY 

In order to verify the consistency of our procedure we need the following notation: 

for h E (0, l )  fixed. Assuming % to be true, 91 denotes the expected value before the 
change, g2 the expected value after the change, and 83 the expected value around the 
changepoint. Note that in the case of an antisymmetric kernel h, el = O2 = 0. Keeping 
this in mind, we formulate 

THEOREM3. Assume that % is true, Put log+(x)= log(max{x, 1)). Suppose that 

(a) Let h be a symmetric kernel. Then 

in probability. 
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(b) Let h be an antisymmetric kernel. Then 

1 (1 - h)t83 if O < t < h,
lim -U[(n+l)t]' 

n-m n2 h(1 - t)83 if h 5 t < 1 

in probability. 

A first proof of Theorem 3(a) was presented by Csorgo and Horvith (1988a). A more 
detailed version, using the weak-convergence results on two-sample U-statistics due to 
P.K. Sen (1974, 1977), was given in Huse (1988). The proof of (b) requires only minor 
modifications, which were presented in Huse (1988). 

As it is a direct consequence of Theorems 1 and 2, respectively, that limn,, ( l /n2)x 
U[(n+lltl= 0 in probability under the null hypothesis of no change, Theorem 3 immediately 
implies consistency under any AMOC alternative that satisfies the condition that at least 
one of 81, 82, and €I3 is nonzero. 
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